Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 542
Filtrar
1.
EMBO J ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600241

RESUMO

A versatile division of apicomplexan parasites and a dearth of conserved regulators have hindered the progress of apicomplexan cell cycle studies. While most apicomplexans divide in a multinuclear fashion, Toxoplasma gondii tachyzoites divide in the traditional binary mode. We previously identified five Toxoplasma CDK-related kinases (Crk). Here, we investigated TgCrk4 and its cyclin partner TgCyc4. We demonstrated that TgCrk4 regulates conventional G2 phase processes, such as repression of chromosome rereplication and centrosome reduplication, and acts upstream of the spindle assembly checkpoint. The spatial TgCyc4 dynamics supported the TgCrk4-TgCyc4 complex role in the coordination of chromosome and centrosome cycles. We also identified a dominant TgCrk4-TgCyc4 complex interactor, TgiRD1 protein, related to DNA replication licensing factor CDT1 but played no role in licensing DNA replication in the G1 phase. Our results showed that TgiRD1 also plays a role in controlling chromosome and centrosome reduplication. Global phosphoproteome analyses identified TgCrk4 substrates, including TgORC4, TgCdc20, TgGCP2, and TgPP2ACA. Importantly, the phylogenetic and structural studies suggest the Crk4-Cyc4 complex is limited to a minor group of the binary dividing apicomplexans.

2.
Exp Parasitol ; 261: 108754, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636935

RESUMO

The apicomplexa Toxoplasma gondii is capable of actively proliferating in numerous types of nucleated cells, and therefore has a high potential for dissemination and resistance. Thus, the present work aimed to correlate the inoculum concentrations and amount of post-infection parasites with porcine hematological parameters (including biochemistry) through in vitro culture. Porcine blood was incubated with different concentrations of parasites (1.2 × 107, 6/3/1.5 × 106 cells/mL), then the concentrations of red blood cells (RBC) and their morphology, total and differential leukocytes, and free peptides were evaluated. In addition, eight different blood samples analyzed before inoculation, where subsequent multivariate analysis was applied to correlate different variables with trophozoite concentration. The results showed no significant variation (p < 0.05) in the relative levels of free peptides, or the relative percentage of RBC at all the parasite concentrations tested. However, the normalized percentages of leukocytes and neutrophils showed a significant reduction, while those of lymphocytes, eosinophils and monocytes showed the opposite behavior. Semi-automatic processing of images exhibited significant microcytosis and hypochromia. The multivariate analysis revealed a positive correlation between the amount number of protozoa (AP) and the variables: "Red cells" and "Neutrophils", an indifference between the AP and the content of free peptides, and the concentration of monocytes in the samples; and a negative correlation for AP and the percentages of lymphocytes and eosinophils. Our results suggest that specific changes in hematological parameters may be associated with different degrees of parasitemia, demanding a thorough diagnostic process and adequate treatment.

3.
Vet Res Commun ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653939

RESUMO

Neosporosis and toxoplasmosis are important parasitic causes of abortions in small ruminants. This study verified the occurrence of these diseases in sheep fetuses from Santa Catarina State, Southern Brazil from 2015 to 2022. Sheep fetuses were necropsied with organ sampling for histopathology, and polymerase chain reaction (PCR) for Neospora caninum and Toxoplasma gondii using the Nc5 and SAG2 targets, respectively, in frozen brain tissue. Microbiological culture and RT-PCR for Pestivirus were conducted to discard other abortion causes. One positive fetus for toxoplasmosis was genotyped using multiplex multilocus nested PCR-RFLP (Mn-PCR-RFLP) with ten genetic markers. Fifty-five sheep fetuses were evaluated, with 10 (18.2%) cases of neosporosis and 7 (12.7%) cases of toxoplasmosis, comprising six and four flocks, respectively. Macroscopically, neosporosis abortions exhibited fetal mummification, maceration, and arthrogryposis. Toxoplasmosis abortions showed fetal mummification and maceration. The neosporosis abortions included lymphoplasmacytic myositis (70%; 7/10) and myocarditis (60%; 6/10), in addition to necrotizing encephalitis and gliosis (50%; 5/10). Toxoplasmosis abortions included lymphoplasmacytic necrotizing encephalitis (71.4%; 5/7), lymphoplasmacytic myositis (42.8%, 3/7), and myocarditis (14.3%; 1/7). Through PCR, N. caninum and T. gondii were detected in 6 (60%) and 5 (71.4%) fetuses, respectively. In one fetus, T. gondii genotyping was conducted, which was characterized as atypical genotype ToxoDB #98. All of the cases were negative for Pestivirus and bacterial agents. This study establishes the occurrence of these diseases as causes of abortions, malformations, mummification, and fetal maceration in sheep, with the characterization of an atypical T. gondii genotype in one of the fetuses.

4.
Trends Parasitol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38637184

RESUMO

The micropore, a mysterious structure found in apicomplexan species, was recently shown to be essential for nutrient acquisition in Plasmodium falciparum and Toxoplasma gondii. However, the differences between the micropores of these two parasites questions the nature of a general apicomplexan micropore structure and whether the formation process model from Plasmodium can be applied to other apicomplexans. We analyzed the literature on different apicomplexan micropores and found that T. gondii probably harbors a more representative micropore type than the more widely studied ones in Plasmodium. Using recent knowledge of the Kelch 13 (K13) protein interactome and gene depletion phenotypes in the T. gondii micropore, we propose a model of micropore formation, thus enriching our wider understanding of micropore protein function.

5.
Malar J ; 23(1): 114, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643106

RESUMO

The use of fluorescent proteins (FPs) in Plasmodium parasites has been key to understand the biology of this obligate intracellular protozoon. FPs like the green fluorescent protein (GFP) enabled to explore protein localization, promoter activity as well as dynamic processes like protein export and endocytosis. Furthermore, FP biosensors have provided detailed information on physiological parameters at the subcellular level, and fluorescent reporter lines greatly extended the malariology toolbox. Still, in order to achieve optimal results, it is crucial to know exactly the properties of the FP of choice and the genetic scenario in which it will be used. This review highlights advantages and disadvantages of available landing sites and promoters that have been successfully applied for the ectopic expression of FPs in Plasmodium berghei and Plasmodium falciparum. Furthermore, the properties of newly developed FPs beyond DsRed and EGFP, in the visualization of cells and cellular structures as well as in the sensing of small molecules are discussed.


Assuntos
Plasmodium berghei , Plasmodium falciparum , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Plasmodium berghei/genética , Regiões Promotoras Genéticas , Plasmodium falciparum/genética , Transporte Proteico
6.
Int J Parasitol Parasites Wildl ; 24: 100939, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38655448

RESUMO

Synanthropic rodents play a crucial role in maintaining the life cycle of Toxoplasma gondii in anthropized regions and can serve as indicators of environmental oocyst contamination. This investigation aimed to explore the occurrence of T. gondii infection within synanthropic rodent populations using a molecular diagnostic technique targeting the 18S rDNA gene, which is generic for Coccidia, with subsequent specific PCR confirmation. We examined 97 brown rats (Rattus norvegicus), 67 black rats (R. rattus), 47 house mice (Mus musculus), and 1 common shrew (Sorex araneus). PCR tests were conducted on the brain, heart, and tongue tissues. PCR tested positive in at least one of the examined tissues in 26 R. norvegicus (26.8%), 13 R. rattus (19.4%), and 13 M. musculus (27.6%). Sequencing comparisons by BLAST allowed us to identify four different species of cyst-forming Apicomplexa. In particular, T. gondii DNA was detected in 13 (6.1%) rodents, Hammondia hammondi (including H. hammondi-like organisms) in 36 (17%) subjects, Besnoitia sp. (in two cases identified as B. besnoiti) in 8 (3.7%), and Sarcocystis gigantea in two (0.94%). Rodents from peri-urban and urban environments can act as indicators of environmental contamination by oocysts of apicomplexan parasites with cats as definitive hosts, such as T. gondii, H. hammondi, and S. gigantea, the latter of which has never been previously recorded in rodents. Moreover, the presence of B. besnoiti, a parasite with an unidentified definitive host in Europe, sheds light on the potential role of these hosts as infection sentinels.

7.
Int J Paleopathol ; 45: 46-54, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657471

RESUMO

OBJECTIVE: To analyze the presence of protozoan parasites in bird coprolites from the Tremembé Formation (Oligocene of the Taubaté Basin). MATERIALS: Twenty avian coprolites embedded in pyrobituminous shale matrices. METHODS: Samples were rehydrated and subjected to spontaneous sedimentation. RESULTS: Paleoparasitological analyses revealed oocysts compatible with the Eimeriidae family (Apicomplexa) and one single Archamoebae (Amoebozoa) cyst. CONCLUSIONS: The present work increases the amount of information about the spread of infections throughout the Cenozoic Era and reveals that the Brazilian paleoavifauna played an important role in the Apicomplexa and Amoebozoa life cycles. SIGNIFICANCE: This is the first record of protozoans in avian coprolites from the Oligocene of Brazil. These findings can help in the interpretation of phylogenies of coccidian parasites of modern birds, as certain taxonomic characters observed in the Oligocene Protozoa characterize monophyletic groups in current molecular phylogenetic analyses. LIMITATIONS: None of the oocysts were sporulated; therefore, it is not possible to identify the morphotypes to genus or species. SUGGESTIONS FOR FURTHER RESEARCH: Our results create new perspectives related to biogeographic studies of the parasitic groups described and may improve the understanding of the temporal amplitude of parasitic evolutionary relationships between Protozoans and birds.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38651633

RESUMO

Background: The aim of the present study was to describe the presence of co-infection by Toxoplasma gondii and Neospora caninum in goats reared in extensive systems from Mexico. Materials and Methods: A cross-sectional study was conducted to determine the frequency of T. gondii and N. caninum, by detecting antibodies to each parasite by mean commercial ELISA kits. A total of 176 blood samples were randomly collected from mature females reared in extensive system herds from 20 municipalities of state of Guanajuato, Mexico. Results: The general seroprevalence was 23.9 and 21.0% for T. gondii and N. caninum, respectively, while co-infection rate was 3.6%. For geographic and environmental variables, no differences were observed among T. gondii and coinfection; however, it was observed that altitude, annual precipitation, annual average temperature, and rainy period showed significant differences with N. caninum seropositive goats. Conclusion: The seroprevalence of both parasites was appreciated in most of the studied herds. The present study is the first report of T. gondii and N. caninum co-infection in goats from extensive herds in Mexico.

9.
Trends Parasitol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531711

RESUMO

Microtubules (MTs) play a vital role as key components of the eukaryotic cytoskeleton. The phylum Apicomplexa comprises eukaryotic unicellular parasitic organisms defined by the presence of an apical complex which consists of specialized secretory organelles and tubulin-based cytoskeletal elements. One apicomplexan parasite, Toxoplasma gondii, is an omnipresent opportunistic pathogen with significant medical and veterinary implications. To ensure successful infection and widespread dissemination, T. gondii heavily relies on the tubulin structures present in the apical complex. Recent advances in high-resolution imaging, coupled with reverse genetics, have offered deeper insights into the composition, functionality, and dynamics of these tubulin-based structures. The apicomplexan tubulins differ from those of their mammalian hosts, endowing them with unique attributes and susceptibility to specific classes of inhibitory compounds.

10.
Eur J Protistol ; 94: 126065, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38492251

RESUMO

Extreme functional reduction of mitochondria has taken place in parallel in many distantly related lineages of eukaryotes, leading to a number of recurring metabolic states with variously lost electron transport chain (ETC) complexes, loss of the tricarboxylic acid (TCA) cycle, and/or loss of the mitochondrial genome. The resulting mitochondria-related organelles (MROs) are generally structurally reduced and in the most extreme cases barely recognizable features of the cell with no role in energy metabolism whatsoever (e.g., mitosomes, which generally only make iron-sulfur clusters). Recently, a wide diversity of MROs were discovered to be hiding in plain sight: in gregarine apicomplexans. This diverse group of invertebrate parasites has been known and observed for centuries, but until recent applications of culture-free genomics, their mitochondria were unremarkable. The genomics, however, showed that mitochondrial function has reduced in parallel in multiple gregarine lineages to several different endpoints, including the most reduced mitosomes. Here we review this remarkable case of parallel evolution of MROs, and some of the interesting questions this work raises.

11.
J Parasitol ; 110(2): 90-95, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466807

RESUMO

We report the morphological characteristics of oocysts of Eimeria lancasterensisJoseph, 1969, collected from 6 of 6 (100%) eastern gray squirrels, Sciurus carolinensis, collected in Arkansas (n = 3) and Oklahoma (n = 3), and Eimeria ontarioensisLee and Dorney, 1971, recovered from an individual of S. carolinensis from Arkansas. Oocysts of E. lancasterensis were ovoidal to ellipsoidal, measuring (L × W) 24.0 × 14.6 (18-29 × 12-16) µm; shape index (L/W) was 1.6 (1.3-1.8). A micropyle and an oocyst residuum were absent, but up to 2 polar granules were present. Oocysts of E. ontarioensis were piriform and measured 40.6 × 26.0 (37-44 × 23-28); L/W was 1.6 (1.5-1.7). These oocysts possessed a distinct micropyle and rarely a polar granule but lacked an oocyst residuum. The DNA was isolated from both eimerians, and the 18S rDNA genetic markers were PCR-amplified, cloned, sequenced, and analyzed. To our knowledge, this study represents the first time 18S DNA sequence data have been generated from E. lancasterensis and E. ontarioensis found in North American sciurid hosts, as well as new geographic distribution records for these coccidians. In addition, we also include a tabular summary of these 2 species of Eimeria from Sciurus spp. worldwide, with information on their hosts, distribution, and taxonomically important morphological characteristics, including key measurements of oocysts and sporocysts.


Assuntos
Coccidiose , Eimeria , Animais , Sciuridae , Arkansas/epidemiologia , Oklahoma/epidemiologia , Fezes , Oocistos , Coccidiose/epidemiologia , Coccidiose/veterinária
12.
Mol Phylogenet Evol ; 195: 108060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485105

RESUMO

Apicomplexans are a diverse phylum of unicellular eukaryotes that share obligate relationships with terrestrial and aquatic animal hosts. Many well-studied apicomplexans are responsible for several deadly zoonotic and human diseases, most notably malaria caused by Plasmodium. Interest in the evolutionary origin of apicomplexans has also spurred recent work on other more deeply-branching lineages, especially gregarines and sister groups like squirmids and chrompodellids. But a full picture of apicomplexan evolution is still lacking several lineages, and one major, diverse lineage that is notably absent is the adeleorinids. Adeleorina apicomplexans comprises hundreds of described species that infect invertebrate and vertebrate hosts across the globe. Although historically considered coccidians, phylogenetic trees based on limited data have shown conflicting branch positions for this subgroup, leaving this question unresolved. Phylogenomic trees and large-scale analyses comparing cellular functions and metabolism between major subgroups of apicomplexans have not incorporated Adeleorina because only a handful of molecular markers and a couple organellar genomes are available, ultimately excluding this group from contributing to our understanding of apicomplexan evolution and biology. To address this gap, we have generated complete genomes from mitochondria and plastids, as well as multiple deep-coverage single-cell transcriptomes of nuclear genes from two Adeleorina species, Klossia helicina and Legerella nova, and inferred a 206-protein phylogenomic tree of Apicomplexa. We observed distinct structures reported in species descriptions as remnant host structures surrounding adeleorinid oocysts. Klossia helicina and L. nova branched, as expected, with monoxenous adeleorinids within the Adeleorina and their mitochondrial and plastid genomes exhibited similarity to published organellar adeleorinid genomes. We show with a phylogeneomic tree and subsequent phylogenomic analyses that Adeleorina are not closely related to any of the currently sampled apicomplexan subgroups, and instead fall as a sister to a large clade encompassing Coccidia, Protococcidia, Hematozoa, and Nephromycida, collectively. This resolves Adeleorina as a key independently-branching group, separate from coccidians, on the tree of Apicomplexa, which now has all known major lineages sampled.


Assuntos
Apicomplexa , Genomas de Plastídeos , Animais , Humanos , Filogenia , Plastídeos/genética , Genoma , Apicomplexa/genética
13.
Exp Parasitol ; 259: 108727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431113

RESUMO

Toxoplasmosis is a zoonosis that is a worldwide health problem, commonly affecting fetal development and immunodeficient patients. Treatment is carried out with a combination of pyrimethamine and sulfadiazine, which can cause cytopenia and intolerance and does not lead to a parasitological cure of the infection. Lysine deacetylases (KDACs), which remove an acetyl group from lysine residues in histone and non-histone proteins are found in the Toxoplasma gondii genome. Previous work showed the hydroxamate-type KDAC inhibitors Tubastatin A (TST) and Vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) were effective against T. gondii. In the present study, the effects of three hydroxamates (KV-24, KV-30, KV-46), which were originally designed to inhibit human KDAC6, showed different effects against T. gondii. These compounds contain a heterocyclic cap group and a benzyl linker bearing the hydroxamic acid group in para-position. All compounds showed selective activity against T. gondii proliferation, inhibiting tachyzoite proliferation with IC50 values in a nanomolar range after 48h treatment. Microscopy analyses showed that after treatment, tachyzoites presented mislocalization of the apicoplast, disorganization of the inner membrane complex, and arrest in the completion of new daughter cells. The number of dividing cells with incomplete endodyogeny increased significantly after treatment, indicating the compounds can interfere in the late steps of cell division. The results obtained in this work that these new hydroxamates should be considered for future in vivo tests and the development of new compounds for treating toxoplasmosis.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Lisina/farmacologia , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Ácidos Hidroxâmicos/farmacologia , Vorinostat/farmacologia
14.
Methods Mol Biol ; 2776: 197-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502506

RESUMO

Apicomplexan parasites are unicellular eukaryotes responsible for major human diseases such as malaria and toxoplasmosis, which cause massive social and economic burden. Toxoplasmosis, caused by Toxoplasma gondii, is a global chronic infectious disease affecting ~1/3 of the world population and is a major threat for any immunocompromised patient. To date, there is no efficient vaccine against these parasites and existing treatments are threatened by rapid emergence of parasite resistance. Throughout their life cycle, Apicomplexa require large amount of nutrients, especially lipids for propagation and survival. Understanding lipid acquisition is key to decipher host-parasite metabolic interactions. Parasite membrane biogenesis relies on a combination of (a) host lipid scavenging, (b) de novo lipid synthesis in the parasite, and (c) fluxes of lipids between host and parasite and within. We recently uncovered that parasite need to store the host-scavenged lipids to avoid their toxic accumulation and to mobilize them for division. How can parasites orchestrate the many lipids fluxes essential for survival? Here, we developed metabolomics approaches coupled to stable isotope labelling to track, monitor, and quantify fatty acid and lipids fluxes between the parasite, its human host cell, and its extracellular environment to unravel the complex lipid fluxes in any physiological environment the parasite could meet.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Animais , Humanos , Parasitos/metabolismo , Plastídeos/metabolismo , Ácidos Graxos/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Proteínas de Protozoários/metabolismo
15.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405857

RESUMO

Multiple Displacement Amplification (MDA) outperforms conventional PCR in long fragment and whole genome amplification which makes it attractive to couple with long-read sequencing of samples with limited quantities of DNA to obtain improved genome assemblies. Here, we explore the efficacy and limits of MDA for genome sequence assembly using Oxford Nanopore Technologies (ONT) rapid library preparations and minION sequencing. We successfully generated almost complete genome sequences for all organisms examined, including Cryptosporidium meleagridis, Staphylococcus aureus, Enterococcus faecium, and Escherichia coli, with the ability to generate high-quality data from samples starting with only 0.025 ng of total DNA. Controlled sheared DNA samples exhibited a distinct pattern of size-increase after MDA, which may be associated with the amplification of long, low-abundance fragments present in the assay, as well as generating concatemeric sequences during amplification. To address concatemers, we developed a computational pipeline (CADECT: Concatemer Detection Tool) to identify and remove putative concatemeric sequences. This study highlights the efficacy of MDA in generating high-quality genome assemblies from limited amounts of input DNA. Also, the CADECT pipeline effectively mitigated the impact of concatemeric sequences, enabling the assembly of contiguous sequences even in cases where the input genomic DNA was degraded. These results have significant implications for the study of organisms that are challenging to culture in vitro, such as Cryptosporidium, and for expediting critical results in clinical settings with limited quantities of available genomic DNA.

16.
Cell Rep ; 43(2): 113740, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38363682

RESUMO

The organelle paralogy hypothesis (OPH) aims to explain the evolution of non-endosymbiotically derived organelles. It predicts that lineage-specific pathways or organelles should result when identity-encoding membrane-trafficking components duplicate and co-evolve. Here, we investigate the presence of such lineage-specific membrane-trafficking machinery paralogs in Apicomplexa, a globally important parasitic lineage. We are able to identify 18 paralogs of known membrane-trafficking machinery, in several cases co-incident with the presence of new endomembrane organelles in apicomplexans or their parent lineage, the Alveolata. Moreover, focused analysis of the apicomplexan Arf-like small GTPases (i.e., ArlX3) revealed a specific post-Golgi trafficking pathway. This pathway appears involved in delivery of proteins to micronemes and rhoptries, with knockdown demonstrating reduced invasion capacity. Overall, our data have identified an unforeseen post-Golgi trafficking pathway in apicomplexans and are consistent with the OPH mechanism acting to produce endomembrane pathways or organelles at various evolutionary stages across the alveolate lineage.


Assuntos
Complexo de Golgi
17.
Acta Parasitol ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340289

RESUMO

PURPOSE: Little is known about the coccidian parasites of the American alligator, Alligator mississippiensis (Daudin). To date, only two species of Eimeria Schneider, 1875 have been previously reported from A. mississippiensis. Here, we report from mensural and morphometric data on two new species of Eimeria from A. mississippiensis from Georgia, USA. METHODS: Fresh feces were collected in June 2023 from a single captive juvenile male A. mississippiensis. Multiple samples were placed in individual zip-lock bags and aqueous potassium dichromate was added. They were examined for sporulated oocysts after flotation in Sheather's sugar solution, measured, and photographed. RESULTS: Samples contained oocysts representing two new species of Eimeria. Oocysts of Eimeria tellezae n. sp. are subspheroidal to ellipsoidal with a pitted bi-layered wall, measure (L × W) 34.5 × 31.5 µm, and have a length/width (L/W) ratio of 1.1; a micropyle and polar granule were absent but an oöcyst residuum was present. Sporocysts are ellipsoidal and measure 17.2 × 7.7 µm, L/W 2.2; a nipple-like Stieda body bearing one to several filaments was present but sub-Stieda and para-Stieda bodies were absent. The sporocyst residuum is composed of various-sized granules in a compact rounded or irregular mass, sometimes dispersed between the sporozoites. Oocysts of Eimeria daudini n. sp. are ellipsoidal with a pitted bi-layered wall, measure (L × W) 32.5 × 20.2 µm, and have a length/width (L/W) ratio of 1.6; a micropyle and polar granule were absent but an oöcyst residuum was present. Sporocysts are ellipsoidal and measure 15.4 × 7.4 µm, L/W 2.1; a nipple-like Stieda body bearing one to several filaments was present but sub-Stieda and para-Stieda bodies were absent. The sporocyst residuum is composed of various-sized granules in a compact rounded or irregular mass, sometimes dispersed between the sporozoites. Both new species can readily be distinguished from previously described eimerians from crocodilians, including those from A. mississippiensis. CONCLUSION: We document two new species of Eimeria from the American alligator. Currently, four species of Eimeria are known from A. mississippiensis examined from both east and west of the Mississippi River, USA.

18.
Proc Natl Acad Sci U S A ; 121(9): e2312987121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377214

RESUMO

Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites and the lack of specific drugs necessitate the discovery of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of Babesia spp. (B. bovis and B. divergens). We identified a potent antibabesial, MMV019266, from the Malaria Box, and selected for resistance in two species of Babesia. After sequencing of multiple independently derived lines in the two species, we identified mutations in a membrane-bound metallodependent phosphatase (phoD). In both species, the mutations were found in the phoD-like phosphatase domain. Using reverse genetics, we validated that mutations in bdphoD confer resistance to MMV019266 in B. divergens. We have also demonstrated that BdPhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of BdPhoD alter the sensitivity to MMV019266 in the parasite. Overexpression of BdPhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting BdPhoD is a pro-susceptibility factor. Together, we have generated a robust pipeline for identification of resistance loci and identified BdPhoD as a resistance mechanism in Babesia species.


Assuntos
Anti-Infecciosos , Babesia , Babesiose , Humanos , Babesia/genética , Fosfatase Alcalina , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Genômica , Anti-Infecciosos/farmacologia
19.
J Eukaryot Microbiol ; : e13023, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38402546

RESUMO

The cytoskeletal organization of a squirmid, namely Platyproteum vivax, was investigated with confocal laser scanning microscopy (CLSM) to refine inferences about convergent evolution among intestinal parasites of marine invertebrates. Platyproteum inhabits Pacific peanut worms (Phascolosoma agassizii) and has traits that are similar to other lineages of myzozoan parasites, namely gregarine apicomplexans within Selenidium, such as conspicuous feeding stages, called "trophozoites," capable of dynamic undulations. SEM and CLSM of P. vivax revealed an inconspicuous flagellar apparatus and a uniform array of longitudinal microtubules organized in bundles (LMBs). Extreme flattening of the trophozoites and a consistently oblique morphology of the anterior end provided a reliable way to distinguish dorsal and ventral surfaces. CLSM revealed a novel system of microtubules oriented in the flattened dorsoventral plane. Most of these dorsoventral microtubule bundles (DVMBs) had a punctate distribution and were evenly spaced along a curved line spanning the longitudinal axis of the trophozoites. This configuration of microtubules is inferred to function in maintaining the flattened shape of the trophozoites and facilitate dynamic undulations. The novel traits in Platyproteum are consistent with phylogenomic data showing that this lineage is only distantly related to Selenidium and other marine gregarine apicomplexans with dynamic intestinal trophozoites.

20.
Mol Microbiol ; 121(4): 717-726, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38225194

RESUMO

Apicomplexan parasites are aetiological agents of numerous diseases in humans and livestock. Functional genomics studies in these parasites enable the identification of biological mechanisms and protein functions that can be targeted for therapeutic intervention. Recent improvements in forward genetics and whole-genome screens utilising CRISPR/Cas technology have revolutionised the functional analysis of genes during Apicomplexan infection of host cells. Here, we highlight key discoveries from CRISPR/Cas9 screens in Apicomplexa or their infected host cells and discuss remaining challenges to maximise this technology that may help answer fundamental questions about parasite-host interactions.


Assuntos
Apicomplexa , Parasitos , Humanos , Animais , Sistemas CRISPR-Cas , Genoma , Apicomplexa/genética , Parasitos/genética , Interações Hospedeiro-Parasita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...